
python
unicode

pycon italia
antonio cavedoni

and

python
unicode

and

Don’t be scared!

This stuff is easy

So what is text (in the computer sense)?

a sequence of characters

a’ight: which characters?
how are they stored?

Different ways of storing data on disk

ASCII (7-bit + high
bit code pages for
european languages)
American Standard
Code for Information
Interchange

Multibyte code pages,
like Shift-JIS, which
uses the bit range
0x80-0xff to denote
the start of a
multibyte sequence of
chars

Unicode, which is
not an encoding but
also has a family of
encodings

Unicode

U+0041
LATIN CAPITAL LETTER A

Each glyph is
represented by a
“code point”, which is
an abstract entity.

U+03A3
GREEK CAPITAL LETTER SIGMA

A
Σ

Favourites

U+270C
VICTORY HAND

U+3020
POSTAL MARK FACE ✌〠

Favourites

U+FFFD
REPLACEMENT CHARACTER �

Encodings

Code points don’t necessary relate to the
way they are actually stored on-disk. That’s
what Unicode encodings are for. There are
several kinds of encodings.

Encodings

UTF-8 which is a multibyte encoding: ASCII
characters are preserved as-is, all the other
code points get the multibyte treatment

UTF-16 (also known as UCS-2) and UTF-32
(UCS-4) where each code point is stored in
either combinations of 2 or 4 bytes.

Joel’s article on Unicode

Popular article by Joel Spolsky, which you
should check out.

http://www.joelonsoftware.com/articles/Unicode.html

There ain’t no such thing as plain text

If you don’t know the encoding of a string,
all bets are off.

 To actually do something with a string you absolutely need to know
 how it’s encoded, otherwise it’s just a hopeless struggle. You can
 try to do some guesswork and there are packages that help with it.

Ugly guesswork

This is what web browsers do. There is a Python implementation of
this strategy that is a direct port of how Mozilla handles encoding
problems. It’s by Mark Pilgrim, feedparser author, and is called
Universal Encoding Detector.

http://chardet.feedparser.org/

python
unicode

and

Python Unicode support

Python’s Unicode support is very good and
has been for a while

…will get even better in Python 3000 when
Unicode strings will be the default

How to get a unicode string

Several ways By typing it in:
>>> foo = u"Hello, world."
>>> foo = u"A letter: \u0041"

By decoding an existing byte string:
>>> foo = "Accented a: à".decode("utf-8")
>>> foo = unicode("Accented a: à", "utf-8")

unicode() on strings

Accepts two
additional
parameters

encoding specifies the codec to decode the
string

error may be ‘strict’ (raises ValueError on
errors, default), ‘ignore’ (causes errors to
be silently ignored) or ‘replace’ (substitutes
undecodable characters with U+FFFD,
REPLACEMENT CHARACTER)

unicode() calls __unicode__()

Return the Unicode string version of object

For objects which provide a __unicode__ method, it will call this method
without arguments to create a Unicode string. For all other objects,
the 8-bit string version or representation is requested and then
converted to a Unicode string using the codec for the default encoding
in strict mode.

decode()

Strings have decode() methods that you can
use to get Unicode objects, similar to the
unicode() built-in

Calling by name

You can also call a
Unicode code point
with other escape
sequences

by name
>>> foo = u"\N{POSTAL MARK FACE}"

by code point below U+FFFF
>>> foo = u"\u00f1"
U+00F1 LATIN SMALL LETTER N WITH TILDE

by code point above U+FFFF
>>> foo = u"\U00010346"
U+10346 GOTHIC LETTER FAIHU

Converting encodings

Example: converting
a string from one
encoding to another

(assuming foo is a latin1 string gathered from
somewhere)
>>> foo = foo.decode("latin1").encode("utf-8")

Source code files

You can specify the
encoding of each
Python code file with a
comment on the first
line (after the python
interpreter one)

-*- coding: utf-8 -*-

import os, sys

#!/usr/bin/python
-*- coding: utf-8 -*-

import os, sys

Source code files

What this enables is to
use UTF-8 bytestrings
directly inside source
file strings

-*- coding: utf-8 -*-
foo = "Accented a: à"
foo = foo.decode("utf-8")

python
unicode

common pitfalls

and

Printing: UnicodeEncodeError

You are trying to
printing a Unicode
string and nothing
works

>>> print u"\N{POSTAL MARK FACE}"
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeEncodeError: "ascii" codec can’t
encode character u"\u3020" in position 0:
ordinal not in range(128)

Printing: UnicodeEncodeError

Because the default codec is ascii. Change
it something actually able to encode that
character, like UTF-8 and if your terminal
supports it, you should see

You are trying to
printing a Unicode
string and nothing
works

>>> print u"\N{POSTAL MARK FACE}".\
encode("utf-8")
〠

Can’t decode: UnicodeDecodeError

The reverse is true as
well: you’re trying to
get a Unicode object
from a bytestring but
it doesn’t work

>>> unicode("chaîne de caractères", "ascii")
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeDecodeError: ‘ascii’ codec can’t
decode byte 0xee in position 3: ordinal not in
range(128)

Can’t decode: UnicodeDecodeError

This happens when you try to create a
Unicode object but the codec can’t decode
it, or an encoding is not specified for
unicode() and the default
(sys.getdefaultencoding()) gets used

Can’t decode

Also happens when
you try to encode
an already-encoded
bytestring

>>> face_utf8 = u"\N{POSTAL MARK FACE}".\
encode("utf-8")
>>> print face_utf8
〠
>>> face_utf8.encode("utf-8")
Traceback (most recent call last):
 File “<stdin>”, line 1, in ?
UnicodeDecodeError: ‘ascii’ codec can’t
decode byte 0xe3 in position 0: ordinal not in
range(128)

Unicode{Encode|Decode}Error: not evil!

UnicodeDecodeError
and
UnicodeEncodeError
are not evil and are in
fact a way for Python
to try and get you to
ask yourself these
questions

Where does this string come
from? Is it encoded? How? In
which piece of code?

Unicode{Encode|Decode}Error: not evil!

Besides, it’s probably not even a Unicode
problem, it’s more a problem with the
reality of how text is stored on a computer

python
unicode

stdlib modules

and

codecs

important functions provided by this
module are open, which lets you open an
encoded file on-disk and read it (or write)
as Unicode transparently, and register,
which allows writing write custom codec
handlers. It also has some constants for
BOMs, etc.

unicodedata

unicodedata has the name function that given a unicode character
can return its name according to the Unicode database file (3.2 until
Python 2.4, 4.1.0 since Python 2.5), lookup function that gives you
a Unicode character given its name and normalize function which
handles NFC/NFD, NFKC/NFKD conversions.

unicodedata can also tell you in which unicode group does a character
belong, if it’s a digit or not and its bidirectional category

re

Python regular expressions can search
Unicode strings too, just pass them the
re.UNICODE or re.U parameter

python
unicode

thank you

and

